Early Neutrino Data in the NOvA Near Detector

Minerba Betancourt and Chad Johnson
University of Minnesota, Indiana University

On behalf of the NOvA Collaboration

NOvA Near Detector On the Surface (NDOS)

Detector located on the surface at Fermilab

- Detector made with PVC modules
- Each module is made of 32 cells
- Cells filled with liquid scintillator
- Looped wavelength shifting fiber collects light
- Readout by 32-pixel Avalanche Photo-Diode (APD)

Prototyping tests:

- Assembly technique
- Scintillator filling
- Light yield
- APD installation and functioning
- Electronics installation and functioning
- DAQ functioning

Near Detector Location

Near Detector taking data from both beams NuMI and Booster

NDOS is ~6.1° off axis of the NuMI beam and on the Booster axis

NuMI beam

MC Simulations

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Neutrino Energy (GeV)

Plane of horizontal cells

Expected Event Rates

Expedica Event nates						
2x10 ²⁰ POT (20 tons)	NuMI Neutrino	NuMI Anti-Neutrino	Booster Anti-Neutrino			
v_{μ} +anti- v_{μ} CC	4500	3300	735			
In 2GeV peak	1500	800				
v _e +anti-v _e CC	200	160	10			
NC	2000	1600	392			

More details on NOvA see E. Niner and Z. Wang

Physics goals for the Near Detector On the Surface

- Calibrate the detector
- Determine composition of the beam
- Investigate the detector sensitivity to cosmic ray background
- Study response of the detector to electron neutrinos
- Measure the rate of neutrino interactions for quasi-elastic (QE) interactions

Events in Detector during Commissioning

Neutrino Signal in the Near Detector

NuMI Neutrino and Antineutrino mode

Time Distribution

Requiring activity in the detector and the vertex in the fiducial region

Time Distribution after angle selection

Events Collected					
	POT	NuMI	Cosmic Bg		
Neutrino	5.6x10 ¹⁸	253	39		
Antineutrino	8.4x10 ¹⁹	1001	69		

Requiring activity in the detector, vertex in the fiducial region, and consistency with beam direction $\cos(\theta_{\text{NuMI}})>0.85$

Booster Antineutrino mode

Time Distribution

220

180

160

140

120

0 50 100 150 200 250 300 350 400 450 500

3.05x10¹⁹ POT collected from the Booster

222 Booster events and 92 cosmic background events

Track Length for NuMI Antineutrinos events

Data-MC track length comparison

	NuMI	Cosmic Bg	MC
Fiducial	1001	69	861
Fully	184	12	187
contained			

Fully contained: Events with vertex and end of the track inside of fiducial region

